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Introduction

g

Cold regions have good wind resources, but atmospheric icing is one of the major
hinderence in proper utilization of these resources, as ice accretion on wind turbines
effects its performance and resultant Annual Energy Production (AEP).

Atmospheric icing on wind turbines mainly occurs due to collision and freezing of super
cooled water droplets with the exposed surface of wind turbines.

Wind turbine design/performance/operations in cold regions gets effected due to ice that
leads to disrupted blade aerodynamics, increased fatigue and structural failure due to
mass imbalance and damage or harm caused by the possible uncontrolled shedding of ice
chunks from wind turbines.

There is a need to develop a better understanding of atmopsheric icing physics and it’s
resultant effects to improve the design and safety of wind turbines operations in icing
conditions.

International Energy Agency (IEA) Annex 19: ‘Wind energy in cold climates’, also calls
for developing new methods to better predict the effects of ice accretion on wind turbine
performance and energy production.
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(Example of atmospheric ice accretion on wind turbines in cold regions)

[1]-Maissan, T.M., The Effects of the Black Blades on Surface Temperatures for Wind Turbines ,in W.A.T. J., Editor 2001, Université du Québec a Rimouski: Canada

3
[2]- http://www.eolos.umn.edu/research



Icing Effects on Wind Turbines

O Main effects of atmospheric ice accretion on wind turbine are:

— Disrupted blade aerodynamics.

— Increased fatigue/structural failure due to mass imbalance.
— Human’s harm due to ice shedding.

— Instrumental measurement errors.

— Loss of power production.

— Complete stop of power production.



Wind Resource & Icing Event Assesment




Wind resource assessment in ice prone cold regions is important both
for the operation of wind parks and also to provide more accurate wind
energy production forecast. But its challenging.....!

Wind resource assesment is generally done at planning phase of the
wind park, where detailed analysis are carried out using met mast and
meso-scale numerical modelling tools.

Low temperatures and icing climate set additional challenges for wind
resource assessment in cold regions.

Ice load maps are generally developed at planning/conceptual design
stage to get an estimate of icing events and possible icing loads.



[ Icing event assesments is a continuos process that we generally keep
on analysing even during opeartional phase of a wind park. SCADA data
analysis are carried out on regular basis during winter time to study the
icing events with a particular focus of wind turbine performance
optimization and enhancing the safety aspects of wind park.
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Ref [1]: IEA Wind TCP recommended practice 13: Wind energy in cold climates
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Example case- The impact of ice on the power
curves of a 3MW wind turbine — Ref [1]
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Example case- Left power curve for MAY and
right power curve for November— Ref [1]
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Case Study

Turbine

Siemens_23 93VS

Tower Height

80 m

Rotor Diameter
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lcing events

Icing events

leing events

14 turbines icing events (2013)
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Figure shows that during three years (2013- 2015) icing events occurred 8, 9
and 11 days respectively.
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Icing events (three years summarise of 14 turbines )
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Average temperature & Average wind velocity seasonal comparison in 2014 (Turbine 01)
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Wind Turbine Ice Accretion Physics

d Rate and shape of atmospheric ice accretion on wind turbines depends upon
both geometric and atmospheric parameters, such as:

v Location.
v' Geometric dimensions.
v Surface material.
v" Wind velocity.
v' Atmospheric temperature.
v' Droplet size (MVD).
v' Ligquid Water Content (LWC).
Type of | Density | Adhesion and | General Appearance
wfai;rrc:_‘r ice (kg/m*) | cohesion Colour Shape
Glaze cold air :
/ o .. Glaze 900 Strong transparent | Icicles
o ° : Wet 300 to Weak(forming) | White Icicles
e S—— Suow 600 Strong(frozen)
.o / : o Hard 600 to Strong Opaque Pointing
il liquid @ droplets 1ime 900 windward
water
runoff Soft 200 to Low to white Point windward
water rime 600 medium
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Methodology

O Extant of ice accretion can be estimated either by field measurements, lab
based experimentation or numerical methods with certain accuracy, because:

v" Numerical simulations lnezeesiy
v Lab based tunnel testing (Wind tunnel or icing tunnel)

v" Field testing

decrease
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_ Cost/Time _
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Numerical Modelling of Atmospheric Icing

O Numerical modelling of atmospheric ice accretion on wind turbines is a complex
coupled process, which mainly involves:

@)

©)
©)
@)

Air flow behaviour.

Super cooled water droplet behaviour.
Boundary layer characteristics.
Phase change involving the iced surface thermodynamics.

Shear Stress, Heat Fluxes

Air velocity, Air
Density

Droplet velocity,
Collision
Efficiency

Air Flow Field |~ WaterDroplet

/

v'Air Velocity
v'Surfece Roughness
v'Heat Fluxes
v'Shear Stresses
v'Air Density

Behavior
v'Droplet Velocity
v'Collision Efficiency
v'Collision Location
vLWC Distribution

Eulerian/
Langrangisn
Approach

YIce Shape
vl ce Mass
YIcing Rate
YIcing Location

Surface
thermodynamic
model
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Wet Ice

+ Scale [m)|
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v' Five different sized wind turbine blade profile were analyzed:
v’ Analyses were carried out at wet and dry ice conditions, T=-2 & -10 C.

v' Results indicated that icing is less severe for the larger wind turbines both in
terms of local ice mass and in terms of ice thickness.
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RotorPower (ki)
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Lab Based Study of Atmospheric Icing
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Explaination
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DU96 - Glaze ice shape
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Analytical Modelling of ice accretion on Wind Turbine
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Enhanced Noise Propogation
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Ice Detection

e In-Direct Method
— Production Data

 Direct Methods
— Sensors on the nacelle
— Sensors on the blade



Ice Mitigation

O De-icing using thermal appraoch
O Anti icing using surface coatings




lce Chunks

« Commonly used safety distance rule for icefall
from an operational wind turbine

Safety distance = 1,5 * (H+D)

where

H = hub height of wind turbine
D = rotor diameter

Outside outer zone:
Schools, kindergartens,
shopping malls,
hospitals, etc

Facility @

Inner zone:

Outer zone:
Houses, cafés,
shops, etc

Middle zone:
Public roads,
industrial sites,
scattered houses
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