ZCI Project Masterclass 4

Energy Storage Solutions of Renewable Energy

May 2024

Katja Koponen Director of Business Development

Ilmatar – a Nordic energy company and independent power producer

We are a Nordic energy company and an independent power producer, that focuses exclusively on renewable energy. The development, construction, ownership and maintenance of renewable energy, especially wind and solar power projects form the basis of our business. Taking responsibility over the whole value chain is a unique operating model for an energy company in Finland and Nordic countries.

We enable a more sustainable future!

Ilmatar is owned by funds managed by Omnes Capital and IWP Partners Oy.

1 GW renewable energy at production and construction stage

In Operation

Project development portfolio

BESS Development

Why RES Based IPP Should Have BESSs?

Multimarket and Co-Located Allocation Enables to Spread the Market Risks & Balance the Cash Flows

BESS can be Coupled with RES to Balance Production Profiles and Maximize Grid Usage

- Maximize value of produced energy
 - Peak shaving
- Time shifting, spot arbitrage
- Lower grid costs
 - Opportunity to oversize RES production in connection point
- Opportunity to assemble BESS to the grid without own grid connection agreement or own transmission infrastructure
- Opportunity to utilize the solar PV connection point at the moments when solar production is low or in zero
- System balancing done in local level decrease the grid tariffs and improves energy efficiency

Reserve and Balancing Markets are Currently the Preferred Revenue Stream for BESS

- A BESS can provide **ancillary services in the TSO grid**, participating in the reserve markets
- Out of the different marketplaces, especially suitable for BESS is the FFR due to lower competition from other technologies
 - other suitable marketplaces are the FCR-N, FCR-D up, FCR-D down, aFRR and mFRR markets
- Reserve markets are currently the preferred revenue stream for BESS actors and provide freedom in the geographical placement of the BESS
- A BESS is also able to **participate in arbitrage**, though it is seen as a secondary revenue stream currently

RES based power system value of markets is moving more and more towards balancing services

How Energy Storage Benefits EV Charging?

Industrial level - Energy Storage at Production Site

- Industrial level storage solutions decrease the market price volatility
- When storages next to the highways, makes it possibility easily to build EV charging stations for heavy EVs (e.g. with 2 MW charging power)
- Makes it easier for EV chargers to forecast monthly / annual costs
- Charging prices in the future based on SPOT-prices (day-ahead prices)
- System prices decreased

Block house level – Energy Storage at Parking Area

- Microgrid systems: solar production, storage and consumption "behind the same meter"
- Payback time easy to calculate
- Storage makes it possible to charge the storage at low price level and discharge from the storage to EVs when prices are high
- Time shifting: production at the daytime, consumption at the nighttime
- System prices decreasing, still quite high

Private house level – Energy Storage for Private Use

- Microgrid systems: solar production, storage and consumption "behind the same meter"
- Storage makes it possible to charge the storage at low price level and discharge from the storage to EVs when prices are high
- Time shifting: production at the daytime, consumption at the nighttime
- System prices slowly decreasing, still high, payback time at the moment long
- · Also EV V2G possibility to use at the private level easily

Development of Ilmatar BESS Portfolio

Brownfield / Retrofitted projects	Greenfield projects
 Retrofitting BESSs to the already excisiting RES sites. Grid connection and substation excisting: plug and play fast access to markets short development period 	 Add BESS to the solar PV, wind or hybrid projects already at project development stage. Project permitting and financing in one package. Project level optimization. Ensure also LDES project possibilities.

Ilmatar BESS Pipeline

Ilmatar Co-location BESS Portfolio

Finland

Ilmatar Sweden BESS Projects

Next Generation of Energy Storage

Long Duration Energy Storage & System Integration

Non-chemical

Compressed-air Energy Stortage

Liquid-air Energy Storage

Thermal Energy Storage

Based on the reseach and analysing process Ilmatar has in-house capability to enlarge energy storage project development, construction and market trading from current Li-ion BESS portfolio also to LDES technologies.

The 1st legally binding building permit for LDES has received 04/2024.

Location in Southern Finland, hybrid with solar PV and possibility to attach to the district heating pipeline.

Enlarging from Li-ion BESS also to other storage technologies enables "deeper" energy storage and sector integration.

Compared e.g. to hydro / pumped hydro storages, these technologies are faster to develop, cheaper to build and flexible to locate

Case Examples

Project Ainola Case Study: 30 MW BESS Project

30 MW BESS That will be Integrated to the Piiparinmäki Wind Farm

In Ainola, Ilmatar developed a 30 MW / 41 MWh battery energy storage solution that will be connected to an existing substation and wind farm. At signing (took place in 3/2023), a 90% shareholding in the SPV was transferred to Glennmont Ilmatar's role in Ainola going forward:

- Construction manager
- Technical and commercial manager once facility has been energized
- Asset operation (trading the asset to different markets) once COD has been reached
- Co-owner (10%) who will benefit from an earn-out linked to future performance of the asset

	Ð		NMONT NERS		LFEN		
Key Information							
PPA	n/a						
Debt	n/a						
Technolog y	Cont	Containerised system (30 MW / 41 MWh) delivered by Alfen					
Capacity	30 N	1W / 41 MWh					
FID	2023	3					
COD	Q2/2	2024					
Owner	Glen	Glennmont Partners (90%), Ilmatar Energy (10%)					
	IE ar discu to the	nd Glennmont begin ussion on developing a BESS e Piiparinmäki wind farm area	IE handles permitting, develops business case and builds technical connection plan		All contracts and tendering finalised and construction works commence		
Timeline	2021		2022	2023	2024		

Alvar Case Study – A Pioneering Multi-technology Generation and Storage Hub

Developing our Flagship Site, Project Aalto, Into A Landmark Hybrid Project

Key Information		Timeline				
Technology	Full hybrid park (Wind, Solar, BESS)					
Wind	221 MW	2021- 2023	Vestas V162s), 110/33 kV substations and 110 kV grid constructed and brought to COD			
BESS	25 MW/50MWh					
Solar	Möksy PV 1: 50 MWp Louhu PV 1 and Louhu PV 2: 100 MWp		Project Alvar Securing land leases			
	HV & MV grid infrastructure constructed as part of Project Aalto (2021-2023). Spare MV feeders and Möksy and Louhu substation can be utilized "as is" for BESS & PV interconnection.	2022- 2023	Permitting Technical design Procurement Grid interconnection studies			
Grid Connection	Including hybrid component to an existing wind farm sercures full utilization of already invested grid infrastructure. The production profiles of wind and solar well aligned for hybrid usage, component dimensioning can be followed with minimal solar power curtailment.	2024	All Project Alvar permits legally valid and binding, construction contracts negotiated, technical interconnection study completed financing, FID &			
Control	Secure hybrid control optimizing production value		construction start			
FID	Dec-2024 (Möksy PV 1, Louhu BESS) May-2024 (Louhu PV 1 and Louhu PV 2)					
COD	Dec-2025 (Möksy PV 1, Louhu BESS) Jun-2025 (Louhu PV 1 and Louhu PV 2)		· · · · · · · · · · · · · · · · · · ·			

Benefits of Hybrid Production Plant Project

Commercial Land Use Agreements • Shared road use and cable route agreements · Hybrid projects benefits from diversification via merchant exposure from different markets while · Time saving in LLA processes compared to enjoying stable PPA cash flows separate processes Infrastructure and Grid Connection Loads and Load Management • Shared use of in-park transmission cables • Different production profiles and intermitted production allows • Shared use of in-park sub-stations

- Maximum utilization of grid connections
- Shared use of roads

Permitting

- Time saving compared to separate projects
- Cost sharing in EIA- and master planning processes

calculative over-loading

· Securing and management with hybrid controlling system

Thank you!

